December 14, 2024

Corporate Nex Hub

Bringing business progress

Localized nitrogen management strategies can halve fertilizer use in Chinese staple crop production

Localized nitrogen management strategies can halve fertilizer use in Chinese staple crop production
  • Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).

    Article 
    ADS 
    PubMed 
    CAS 
    MATH 

    Google Scholar 

  • Liang, X., Lam, S. K., Zhang, X., Oenema, O. & Chen, D. Pursuing sustainable nitrogen management following the “5 Ps” principles: production, people, planet, policy and partnerships. Glob. Environ. Change 70, 102346 (2021).

    Article 

    Google Scholar 

  • FAOSTAT (FAO, 2024); https://www.fao.org/statistics/en

  • Tian, H. et al. History of anthropogenic nitrogen inputs (HaNi) to the terrestrial biosphere: a 5 arcmin resolution annual dataset from 1860 to 2019. Earth Syst. Sci. Data 14, 4551–4568 (2022).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Erisman, J. W. et al. Consequences of human modification of the global nitrogen cycle. Phil. Trans. R. Soc. B 368, 20130116 (2013).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Lassaletta, L., Billen, G., Grizzetti, B., Anglade, J. & Garnier, J. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 9, 105011 (2014).

    Article 
    ADS 

    Google Scholar 

  • Stevens, C. J. Nitrogen in the environment. Science 363, 578–580 (2019).

    Article 
    ADS 
    PubMed 
    CAS 
    MATH 

    Google Scholar 

  • Kang, J. et al. Ammonia mitigation campaign with smallholder farmers improves air quality while ensuring high cereal production. Nat. Food 4, 751–761 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zhai, S. et al. Control of particulate nitrate air pollution in China. Nat. Geosci. 14, 389–395 (2021).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Bowles, T. M. et al. Addressing agricultural nitrogen losses in a changing climate. Nat. Sustain. 1, 399–408 (2018).

    Article 
    MATH 

    Google Scholar 

  • Snapp, S. et al. Spatially differentiated nitrogen supply is key in a global food–fertilizer price crisis. Nat. Sustain. 6, 1268–1278 (2023).

    Article 
    MATH 

    Google Scholar 

  • Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).

    Article 
    ADS 
    PubMed 
    CAS 
    MATH 

    Google Scholar 

  • Chen, Z.-X. et al. How does organic amendment affect soil microbial nitrate immobilization rate? Soil Biol. Biochem. 173, 108784 (2022).

    Article 
    CAS 

    Google Scholar 

  • Ward, M. H. et al. Drinking water nitrate and human health: an updated review. Int. J. Environ. Res. Public Health 15, 1557 (2018).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Sutton, M. A., Bleeker, A., Howard, C. M., Erisman, J. W. & Zhang, F. Our Nutrient World. The Challenge to Produce More Food and Energy with Less Pollution (Centre for Ecology and Hydrology on behalf of the Global Partnership on Nutrient Management (GPNM) and the International Nitrogen Initiative (INI), 2013).

  • Sapkota, T. B., Bijay, S. & Takele, R. in Advances in Agronomy Vol. 178 (ed. Sparks, D. L.) Ch. 5 (Academic Press, 2023).

  • National Agricultural Product Cost-Benefit Data Compilation 2021 [in Chinese] (National Development and Reform Commission, 2021); https://www.ndrc.gov.cn/fgsj/

  • China Rural Statistical Yearbook 2021 [in Chinese] (National Bureau of Statistics, 2021); https://www.stats.gov.cn/zs/tjwh/tjkw/tjzl/202302/t20230215_1907997.html

  • Action Plan for Zero Growth of Fertilizer Consumption by 2020 [in Chinese] (Ministry of Agriculture, 2015); http://www.moa.gov.cn/ztzl/mywrfz/gzgh/201509/t20150914_4827907.htm

  • Action Plan for Fertilizer Reduction by 2025 [in Chinese] (Ministry of Agriculture, 2022); http://www.moa.gov.cn/govpublic/ZZYGLS/202212/t20221201_6416398.htm

  • Ladha, J. K. et al. Global nitrogen budgets in cereals: a 50-year assessment for maize, rice and wheat production systems. Sci. Rep. 6, 19355 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 
    MATH 

    Google Scholar 

  • Liu, J. et al. A high-resolution assessment on global nitrogen flows in cropland. Proc. Natl Acad. Sci. USA 107, 8035–8040 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 
    MATH 

    Google Scholar 

  • Lee, M., Shevliakova, E., Stock, C. A., Malyshev, S. & Milly, P. C. D. Prominence of the tropics in the recent rise of global nitrogen pollution. Nat. Commun. 10, 1437 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, L. et al. Challenges for global sustainable nitrogen management in agricultural systems. J. Agric. Food Chem. 68, 3354–3361 (2020).

    Article 
    PubMed 
    CAS 
    MATH 

    Google Scholar 

  • Wuepper, D., Le Clech, S., Zilberman, D., Mueller, N. & Finger, R. Countries influence the trade-off between crop yields and nitrogen pollution. Nat. Food 1, 713–719 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zhang, X. et al. Quantification of global and national nitrogen budgets for crop production. Nat. Food 2, 529–540 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Einarsson, R. et al. Crop production and nitrogen use in European cropland and grassland 1961–2019. Sci. Data 8, 288 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 
    MATH 

    Google Scholar 

  • Doering, O. C., Galloway, J. N. & Theis, T. L. Reactive Nitrogen in the United States: An Analysis of Inputs, Flows, Consequences, and Management Options (United States Environmental Protection Agency, 2011).

  • Morseletto, P. Confronting the nitrogen challenge: options for governance and target setting. Glob. Environ. Change 54, 40–49 (2019).

    Article 
    MATH 

    Google Scholar 

  • Zhang, X. et al. Quantifying nutrient budgets for sustainable nutrient management. Global Biogeochem. Cycles 34, e2018GB006060 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Elrys, A. S. et al. Expanding agroforestry can increase nitrate retention and mitigate the global impact of a leaky nitrogen cycle in croplands. Nat. Food 4, 109–121 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Tian, H. et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256 (2020).

    Article 
    ADS 
    PubMed 
    CAS 
    MATH 

    Google Scholar 

  • Kaltenegger, K. & Winiwarter, W. Global gridded nitrogen indicators: influence of crop maps. Global Biogeochem. Cycles 34, e2020GB006634 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 
    MATH 

    Google Scholar 

  • Sabo, R. D. et al. Decadal shift in nitrogen inputs and fluxes across the contiguous United States: 2002–2012. J. Geophys. Res. 124, 3104–3124 (2019).

    Article 
    MATH 

    Google Scholar 

  • Sabo, R. D., Clark, C. M. & Compton, J. E. Considerations when using nutrient inventories to prioritize water quality improvement efforts across the US. Environ. Res. Commun. 3, 045005 (2021).

    Article 

    Google Scholar 

  • Kim, T. et al. Quantifying nitrogen loss hotspots and mitigation potential for individual fields in the US Corn Belt with a metamodeling approach. Environ. Res. Lett. 16, 075008 (2021).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Liang, X. et al. Reactive nitrogen spatial intensity (NrSI): a new indicator for environmental sustainability. Glob. Environ. Change 52, 101–107 (2018).

    Article 
    MATH 

    Google Scholar 

  • Gu, B., Ju, X., Chang, J., Ge, Y. & Vitousek, P. M. Integrated reactive nitrogen budgets and future trends in China. Proc. Natl Acad. Sci. USA 112, 8792–8797 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Cui, Z. et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 555, 363–366 (2018).

    Article 
    ADS 
    PubMed 
    CAS 
    MATH 

    Google Scholar 

  • Ju, X. et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl Acad. Sci. USA 106, 3041–3046 (2009).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 
    MATH 

    Google Scholar 

  • Quan, Z. et al. Fates and use efficiency of nitrogen fertilizer in maize cropping systems and their responses to technologies and management practices: a global analysis on field 15N tracer studies. Earths Future 9, e2020EF001514 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Crippa, M., Solazzo, E., Guizzardi, D., Van Dingenen, R. & Leip, A. Air pollutant emissions from global food systems are responsible for environmental impacts, crop losses and mortality. Nat. Food 3, 942–956 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  • Cui, X. et al. Deceleration of cropland-N2O emissions in China and future mitigation potentials. Environ. Sci. Technol. 56, 4665–4675 (2022).

    Article 
    ADS 
    PubMed 
    CAS 
    MATH 

    Google Scholar 

  • Thompson, R. L. et al. Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nat. Clim. Change 9, 993–998 (2019).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Lugato, E., Leip, A. & Jones, A. Mitigation potential of soil carbon management overestimated by neglecting N2O emissions. Nat. Clim. Change 8, 219–223 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhang, X. et al. Ammonia emissions may be substantially underestimated in China. Environ. Sci. Technol. 51, 12089–12096 (2017).

    Article 
    ADS 
    PubMed 
    CAS 
    MATH 

    Google Scholar 

  • Adalibieke, W. et al. Decoupling between ammonia emission and crop production in China due to policy interventions. Glob. Chang. Biol. 27, 5877–5888 (2021).

    Article 
    PubMed 
    CAS 
    MATH 

    Google Scholar 

  • Gu, B., Ge, Y., Chang, S. X., Luo, W. & Chang, J. Nitrate in groundwater of China: sources and driving forces. Glob. Environ. Change 23, 1112–1121 (2013).

    Article 
    MATH 

    Google Scholar 

  • Sinha, E., Michalak, A. M., Calvin, K. V. & Lawrence, P. J. Societal decisions about climate mitigation will have dramatic impacts on eutrophication in the 21st century. Nat. Commun. 10, 939 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Cai, S. et al. Optimal nitrogen rate strategy for sustainable rice production in China. Nature 615, 73–79 (2023).

    Article 
    ADS 
    PubMed 
    CAS 
    MATH 

    Google Scholar 

  • Zhang, Q. et al. Outlook of China’s agriculture transforming from smallholder operation to sustainable production. Glob. Food Secur. 26, 100444 (2020).

    Article 
    MATH 

    Google Scholar 

  • Zhang, W. et al. Closing yield gaps in China by empowering smallholder farmers. Nature 537, 671–674 (2016).

    Article 
    ADS 
    PubMed 
    CAS 
    MATH 

    Google Scholar 

  • Tao, F., Palosuo, T., Valkama, E. & Mäkipää, R. Cropland soils in China have a large potential for carbon sequestration based on literature survey. Soil Tillage Res. 186, 70–78 (2019).

    Article 

    Google Scholar 

  • Li, S., Zhu, Y. & Li, X. Analysis of the decisions of farmers working different sized farms to constantly use soil testing formula fertilizer. J. Resour. Ecol. 9, 146–153 (2018).

    MATH 

    Google Scholar 

  • Cheng, Y. et al. Application of enhanced-efficiency nitrogen fertilizers reduces mineral nitrogen usage and emissions of both N2O and NH3 while sustaining yields in a wheat–rice rotation system. Agric. Ecosyst. Environ. 324, 107720 (2022).

    Article 
    CAS 

    Google Scholar 

  • Wang, Y., Chen, C., Zhang, H., Chen, W. & Tao, Y. The key technical measures and effects of wheat high-yield promotion activities in Jingtai county [in Chinese]. Mod. Agric. Sci. Technol. 14, 56–57 (2013).

    MATH 

    Google Scholar 

  • Zou, H. et al. Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China. Agric. Water Manag. 230, 105986 (2020).

    Article 
    MATH 

    Google Scholar 

  • Cutler, J. et al. Ageing is associated with disrupted reinforcement learning whilst learning to help others is preserved. Nat. Commun. 12, 4440 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 
    MATH 

    Google Scholar 

  • Huang, X., Lu, Q., Wang, L., Cui, M. & Yang, F. Does aging and off-farm employment hinder farmers’ adoption behavior of soil and water conservation technology in the Loess Plateau? Int. J. Clim. Chang. Strateg. Manag. 12, 92–107 (2020).

    Article 

    Google Scholar 

  • Ren, C. et al. Ageing threatens sustainability of smallholder farming in China. Nature 616, 96–103 (2023).

    Article 
    ADS 
    PubMed 
    CAS 
    MATH 

    Google Scholar 

  • Gu, B. et al. A credit system to solve agricultural nitrogen pollution. Innovation 2, 100079 (2021).

    PubMed 
    PubMed Central 
    CAS 
    MATH 

    Google Scholar 

  • Wang, S. et al. Urbanization can benefit agricultural production with large-scale farming in China. Nat. Food 2, 183–191 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Bijay, S. et al. Site-specific fertilizer nitrogen management in irrigated transplanted rice (Oryza sativa) using an optical sensor. Precis. Agric. 16, 455–475 (2015).

    Article 

    Google Scholar 

  • Ali, A. M., Ibrahim, S. M. & Bijay, S. Wheat grain yield and nitrogen uptake prediction using atLeaf and GreenSeeker portable optical sensors at jointing growth stage. Inf. Process. Agric. 7, 375–383 (2020).

    Google Scholar 

  • Huang, S. et al. Satellite remote sensing-based in-season diagnosis of rice nitrogen status in Northeast China. Remote Sens. 7, 10646–10667 (2015).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Al-Gaadi, K. A. et al. Control and monitoring systems used in variable rate application of solid fertilizers: a review. J. King Saud Univ. Sci. 35, 102574 (2023).

    Article 
    MATH 

    Google Scholar 

  • Gobbo, S. et al. Can crop modelling, proximal sensing and variable rate application techniques be integrated to support in-season nitrogen fertilizer decisions? An application in corn. Eur. J. Agron. 148, 126854 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Huang, J. et al. Trends of global agriculture and prospects of China’s agriculture toward 2050. Strateg. Study CAE 24, 29–37 (2022).

    Article 
    MATH 

    Google Scholar 

  • Gu, B. et al. Cost-effective mitigation of nitrogen pollution from global croplands. Nature 613, 77–84 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 
    MATH 

    Google Scholar 

  • You, L. et al. Global mean nitrogen recovery efficiency in croplands can be enhanced by optimal nutrient, crop and soil management practices. Nat. Commun. 14, 5747 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 
    MATH 

    Google Scholar 

  • Tracy, S. R. et al. Crop improvement from phenotyping roots: highlights reveal expanding opportunities. Trends Plant Sci. 25, 105–118 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Benami, E. et al. Uniting remote sensing, crop modelling and economics for agricultural risk management. Nat. Rev. Earth Environ. 2, 140–159 (2021).

    Article 
    ADS 

    Google Scholar 

  • Basso, B. & Antle, J. Digital agriculture to design sustainable agricultural systems. Nat. Sustain. 3, 254–256 (2020).

    Article 
    MATH 

    Google Scholar 

  • Bodirsky, B. L. et al. Integrating degrowth and efficiency perspectives enables an emission-neutral food system by 2100. Nat. Food 3, 341–348 (2022).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Kanter, D. R. et al. Improving the social cost of nitrous oxide. Nat. Clim. Change 11, 1008–1010 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Chatzimpiros, P. & Harchaoui, S. Sevenfold variation in global feeding capacity depends on diets, land use and nitrogen management. Nat. Food 4, 372–383 (2023).

  • Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).

    Article 
    ADS 
    PubMed 
    CAS 
    MATH 

    Google Scholar 

  • Bodirsky, B. L. et al. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat. Commun. 5, 3858 (2014).

    Article 
    ADS 
    PubMed 
    CAS 
    MATH 

    Google Scholar 

  • Lahmiri, S. Asymmetric and persistent responses in price volatility of fertilizers through stable and unstable periods. Physica A 466, 405–414 (2017).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Wossen, T., Berger, T., Haile, M. G. & Troost, C. Impacts of climate variability and food price volatility on household income and food security of farm households in East and West Africa. Agric. Syst. 163, 7–15 (2018).

    Article 

    Google Scholar 

  • Amolegbe, K. B., Upton, J., Bageant, E. & Blom, S. Food price volatility and household food security: evidence from Nigeria. Food Policy 102, 102061 (2021).

    Article 

    Google Scholar 

  • Duan, J. et al. Consolidation of agricultural land can contribute to agricultural sustainability in China. Nat. Food 2, 1014–1022 (2021).

    Article 
    PubMed 
    CAS 
    MATH 

    Google Scholar 

  • Springmann, M. & Freund, F. Options for reforming agricultural subsidies from health, climate, and economic perspectives. Nat. Commun. 13, 82 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 
    MATH 

    Google Scholar 

  • Xia, L. et al. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. Glob. Chang. Biol. 23, 1917–1925 (2017).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar 

  • Wen, Z. et al. Changes of nitrogen deposition in China from 1980 to 2018. Environ. Int. 144, 106022 (2020).

    Article 
    PubMed 
    CAS 
    MATH 

    Google Scholar 

  • Luo, Z. et al. Hotspots of reactive nitrogen loss in China: production, consumption, spatiotemporal trend and reduction responsibility. Environ. Pollut. 284, 117126 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Shi, Z. et al. Comprehensive utilization status of crop straw and emission of carbon from burning in China. Chin. J. Agric. Resour. Reg. Plan. 38, 32–37 (2017).

    MATH 

    Google Scholar 

  • Liu, Y., Zhang, J. & Zhuang, M. Bottom-up re-estimations of greenhouse gas and atmospheric pollutants derived from straw burning of three cereal crops production in China based on a national questionnaire. Environ. Sci. Pollut. Res. Int. 28, 65410–65415 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • National Agricultural Product Cost-Benefit Data Compilation 2016 [in Chinese] (National Development and Reform Commission, 2016); https://www.ndrc.gov.cn/fgsj/

  • Luo, Z., Hu, S., Chen, D. & Zhu, B. From production to consumption: a coupled human-environmental nitrogen flow analysis in China. Environ. Sci. Technol. 52, 2025–2035 (2018).

    Article 
    ADS 
    PubMed 
    CAS 
    MATH 

    Google Scholar 

  • Xia, L., Ti, C., Li, B., Xia, Y. & Yan, X. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential. Sci. Total Environ. 556, 116–125 (2016).

    Article 
    ADS 
    PubMed 
    CAS 
    MATH 

    Google Scholar 

  • Li, F. Greenhouse gas emissions from major energy consumption in wheat production in China. J. Agro-Environ. Sci. 33, 1041–1049 (2014).

    CAS 
    MATH 

    Google Scholar 

  • Chuan, L. et al. Estimating nutrient uptake requirements for wheat in China. Field Crop. Res. 146, 96–104 (2013).

    Article 
    MATH 

    Google Scholar 

  • Xu, X. et al. Nutrient requirements for maize in China based on QUEFTS analysis. Field Crop. Res. 150, 115–125 (2013).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Xu, X. et al. Estimating nutrient uptake requirements for rice in China. Field Crop. Res. 180, 37–45 (2015).

    Article 
    MATH 

    Google Scholar 

  • Arndt, C., Diao, X., Dorosh, P., Pauw, K. & Thurlow, J. The Ukraine war and rising commodity prices: implications for developing countries. Glob. Food Secur. 36, 100680 (2023).

    Article 

    Google Scholar 

  • Liang, D. et al. China’s greenhouse gas emissions for cropping systems from 1978–2016. Sci. Data 8, 171 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 
    MATH 

    Google Scholar 

  • Yan, X., Akiyama, H., Yagi, K. & Akimoto, H. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines. Global Biogeochem. Cycles 23, GB2002 (2009).

    Article 
    ADS 

    Google Scholar 

  • China County Statistical Yearbook 2016 [in Chinese] (National Bureau of Statistics, 2016); https://www.stats.gov.cn/zs/tjwh/tjkw/tjzl/202302/t20230215_1908004.html

  • Shang, Z. et al. Weakened growth of cropland-N2O emissions in China associated with nationwide policy interventions. Glob. Chang. Biol. 25, 3706–3719 (2019).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar 

  • Zhuang, M. et al. The sustainability of staple crops in China can be substantially improved through localized strategies. Renew. Sustain. Energy Rev. 154, 111893 (2022).

    Article 
    MATH 

    Google Scholar 

  • Liu, Y. et al. Closing greenhouse gas emission gaps of staple crops in China. Environ. Sci. Technol. 56, 9302–9311 (2022).

    Article 
    ADS 
    PubMed 
    CAS 
    MATH 

    Google Scholar 

  • Zhang, G. et al. Carbon and water footprints of major cereal crops production in China. J. Clean. Prod. 194, 613–623 (2018).

    Article 
    MATH 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Copyright © All rights reserved. | Newsphere by AF themes.