Robust fisheries management strategies under deep uncertainty
13 min readLotze, et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. PNAS 116, 12907–12912. (2019).
Google Scholar
Tittensor, D. P. et al. Next-generation ensemble projections reveal higher climate risks for marine ecosystems. Nat. Clim. Change 11, 973–981. (2021).
Google Scholar
Haltuch, M. A. et al. Unraveling the recruitment problem: A review of environmentally-informed forecasting and management strategy evaluation. Fish. Res. 217, 198–216. (2019).
Google Scholar
Hill, S. L. et al. Model uncertainty in the ecosystem approach to fisheries. Fish Fish. 8, 315–336. (2007).
Google Scholar
Payne, M. R. et al. Uncertainties in projecting climate-change impacts in marine ecosystems. ICES J. Mar. Sci. 73, 1272–1282. (2016).
Google Scholar
Szuwalski, C. S. & Hollowed, A. B. Climate change and non-stationary population processes in fisheries management. ICES J. Mar. Sci. 73, 1297–1305. (2016).
Google Scholar
Pineda, J., Reyns, N. B. & Starczak, V. R. Complexity and simplification in understanding recruitment in benthic populations. Popul. Ecol. 51, 17–32. (2009).
Google Scholar
Collie, J. S., Bell, R. J., Collie, S. B. & Minto, C. Harvest strategies for climate-resilient fisheries. ICES J. Mar. Sci. 8, 2774–2783. (2021).
Google Scholar
Houde, E. D. Fish early life dynamics and recruitment variability. Am. Fish. Soc. Symp. 2, 17–29 (1987).
Google Scholar
Lomartire, S., Marques, J. C. & Gonçalves, A. M. M. The key role of zooplankton in ecosystem services: A perspective of interaction between zooplankton and fish recruitment. Ecol. Indic. 129, 107867. (2021).
Google Scholar
Nilssen, E. M., Pedersen, T., Hopkins, C. C. E., Thyholt, K. & Pope, J. G. Recruitment variability and growth of Northeast arctic cod: Influence of physical environment, demography and predator-prey energetics. ICES Mar. Sci. Symp. 198, 449–470 (1994).
Macura, B. et al. Impact of structural habitat modifications in coastal temperate systems on fish recruitment: A systematic review. Environ. Evid. 8, 14. (2019).
Google Scholar
Tiedemann, M., Slotte, A., Nash, R. D. M., Stenevik, E. K. & Kjesbu, O. S. Drift Indices confirm that rapid larval displacement is essential for recruitment success in high-latitude oceans. Front. Mar. Sci. 8, 679900. (2021).
Google Scholar
Myers, R. A. & Barrowman, N. J. Is fish recruitment related to spawner abundance?. Fish. Bull. 94, 707–724 (1996).
Szuwalski, C. S. et al. Global forage fish recruitment dynamics: A comparison of methods, time-variation, and reverse causality. Fish. Res. 214, 56–64. (2019).
Google Scholar
Basson, M. The importance of environmental factors in the design of management procedures. ICES J. Mar. Sci. 56, 933–942. (1999).
Google Scholar
Walker, W. E., Lempert, R. J. & Kwakkel, J. H. Deep Uncertainty. In Encyclopedia of Operations Research and Management Science (eds Gass, S. I. & Fu, M. C.) 395–402 (Springer US, 2013). https://doi.org/10.1007/978-1-4419-1153-7_1140.
Google Scholar
Courtney, H. 20/20 Foresight: Crafting Strategy in an Uncertain World 209 (Harvard Business School Press, 2001).
Walker, W. E. et al. Defining uncertainty: A conceptual basis for uncertainty management in model-based decision support. Integr. Ass. 4, 5–7. (2003).
Google Scholar
Marchau, V. A. W. J., Walker, W. E., Bloemen, P. J. T. M. & Popper, S. W. Introduction. In Decision Making under Deep Uncertainty: From Theory to Practice (eds Marchau, V. A. W. J. et al.) 1–20 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-030-05252-2_1.
Google Scholar
Bloemen, P. J. T. M., Hammer, F., van der Vlist, M. J., Grinwis, P. & van Alphen, J. DMDU into Practice: Adaptive Delta Management in the Netherlands. In Decision Making under Deep Uncertainty: From Theory to Practice (eds Marchau, V. A. W. J. et al.) 321–351 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-030-05252-2_14.
Google Scholar
Vaghefi, S. A., Muccione, V., van Ginkel, K. C. H. & Haasnoot, M. Using decision making under deep uncertainty (DMDU) approaches to support climate change adaptation of Swiss Ski resorts. Environ. Sci. Policy 126, 65–78. (2021).
Google Scholar
Punt, A. E., Butterworth, D. S., de Moor, C. L., de Oliveira, J. A. A. & Haddon, M. Management strategy evaluation: Best practices. Fish Fish. 17, 303–334. (2016).
Google Scholar
Blamey, L. K. et al. Redesigning harvest strategies for sustainable fishery management in the face of extreme environmental variability. Conserv. Biol. 36, 13864. (2021).
Google Scholar
Lempert, R. J. Robust Decision Making (RDM). In Decision Making under Deep Uncertainty: From Theory to Practice (eds Marchau, V. A. W. J. et al.) 23–51 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-030-05252-2_2.
Google Scholar
Rochet, M.-J. & Rice, J. C. Simulation-based management strategy evaluation: Ignorance disguised as mathematics?. ICES J. Mar. Sci. 66, 754–762. (2009).
Google Scholar
Lempert, R. J., Nakicenovic, N., Sarewitz, D. & Schlesinger, M. Characterizing climate-change uncertainties for decision-makers. An editorial essay. Clim. Change 65, 1–9. (2004).
Google Scholar
Howell, D., Filin, A. A., Bogstad, B. & Stiansen, J. E. Unquantifiable uncertainty in projecting stock response to climate change: Example from North East Arctic cod. Mar. Biol. Res. 9, 920–931. (2013).
Google Scholar
Schindler, D. E. & Hilborn, R. Prediction, precaution, and policy under global change. Science 347, 953–954. (2015).
Google Scholar
Lempert, R., Popper, S. & Bankes, S. Shaping the Next One Hundred Years: New Methods for Quantitative, Long-Term Policy Analysis (RAND Corporation, 2003). https://doi.org/10.7249/MR1626.
Google Scholar
Lempert, R. J. et al. Making Good Decisions Without Predictions: Robust Decision Making for Planning Under Deep Uncertainty 6 (RAND Corporation, 2013). https://doi.org/10.7249/RB9701.
Google Scholar
Walker, W. E., Rahman, S. A. & Cave, J. Adaptive policies, policy analysis, and policy-making. Eur. J. Oper. Res. 128, 282–289. (2001).
Google Scholar
Walker, W. E., Marchau, V. A. W. J. & Kwakkel, J. H. Dynamic Adaptive Planning (DAP). In Decision Making under Deep Uncertainty: From Theory to Practice (eds Marchau, V. A. W. J. et al.) 53–69 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-030-05252-2_3.
Google Scholar
Haasnoot, M., Kwakkel, J. H., Walker, W. E. & ter Maat, J. Dynamic adaptive policy pathways: A method for crafting robust decisions for a deeply uncertain world. Glob. Environ. Change 23, 485–498. (2013).
Google Scholar
Pielke, R. A. Jr., Sarewitz, D. & Byerly, R. Jr. Decision Making and the Future of Nature: Understanding and Using Predictions. In Prediction Science, Decision Making, and the Future of Nature (eds Sarewitz, D. et al.) 361–387 (Island Press, 2000).
Lempert, R. J. & Popper, S. W. High-Performance Government in an Uncertain World. In High-Performance Government: Structure, Leadership, Incentives (eds Klitgaard, R. & Light, P. C.) 113–136 (RAND Corporation, 2005).
Hadjimichael, A., Reed, P. M. & Quinn, J. D. Navigating deeply uncertain tradeoffs in harvested predator-prey systems. Complexity 2020, 1–18. (2020).
Google Scholar
Wainger, L. A. et al. (2021) Decision Making under Deep Uncertainty—What is it and how might NOAA use it? Report to the Science Advisory Board from the Ecosystem Science and Management Working Group. NOAA, Washington, D.C. 16
Villasante, S., Rodríguez-Gónzalez, D. & Antelo, M. On the non-compliance in the North Sea cod stock. Sustainability 5, 1974–1993. (2013).
Google Scholar
Blanchard, J. L., Heffernan, O. A. and Fox, C. J. North Sea (ICES Divisions IVa-c and VIId). in ICES Cooperative Research Report No. 274: Spawning and life history information for North Atlantic cod stocks, (Brander, K.) 76–88 (ICES, 2005); https://doi.org/10.17895/ices.pub.5478
ICES. Cod (Gadus morhua) in Subarea 4, Division 7.d, and Subdivision 20 (North Sea, eastern English Channel, Skagerrak). ICES Working Group on the Assessments of Demersal Stocks in the North Sea and Skagerrak, 3 (66), 79–162; (2021).
Rose, G. A., Marteinsdottír, G. & Godø, O.-R. Exploitation: Cod is Fish and Fish is Cod. In Atlantic Cod: A Bio-Ecology (ed. Rose, G. A.) 287–336 (Wiley, 2019). https://doi.org/10.1002/9781119460701.ch7.
Google Scholar
Hutchings, J. A. & Reynolds, J. D. Marine fish population collapses: Consequences for recovery and extinction risk. BioScience 54, 297–309. https://doi.org/10.1641/0006-3568(2004)054[0297:MFPCCF]2.0.CO;2 (2004).
Google Scholar
Sguotti, C. et al. Catastrophic dynamics limit Atlantic cod recovery. Proc. R. Soc. B 286, 20182877. (2019).
Google Scholar
Sguotti, C. et al. Non-linearity in stock–recruitment relationships of Atlantic cod: Insights from a multi-model approach. ICES J. Mar. Sci. 77, 1492–1502. (2020).
Google Scholar
Blöcker, A. M. et al. Regime shift dynamics, tipping points and the success of fisheries management. Sci. Rep. 13, 289. (2023).
Google Scholar
Planque, B., Fox, C. J., Saunders, M. A. & Rockett, P. On the prediction of short term changes in the recruitment of North Sea cod (Gadus morhua) using statistical temperature forecasts. Sci. Mar. 67, 211–218. (2003).
Google Scholar
Sguotti, C. et al. Stable landings mask irreversible community reorganizations in an overexploited Mediterranean ecosystem. J. Anim. Ecol. 91, 2465–2479. (2022).
Google Scholar
Sguotti, C., Färber, L. & Romagnoni, G. Regime Shifts in Coastal Marine Ecosystems: Theory, Methods and Management Perspectives. In Reference Module in Earth Systems and Environmental Sciences (ed. Sguotti, C.) (Elsevier BV, 2022). https://doi.org/10.1016/B978-0-323-90798-9.00004-4.
Google Scholar
NRC Informing Decisions in a Changing Climate. 200. (The National Academy Press, 2009) https://doi.org/10.17226/12626.
Walters, C. J. & Martell, S. J. D. Fisheries Ecology and Management 448 (Princeton University Press, 2005).
Google Scholar
Deroba, J. J. & Bence, J. R. A review of harvest policies: Understanding relative performance of control rules. Fish. Res. 94, 210–223. (2008).
Google Scholar
Restrepo, V. R. & Powers, J. E. Precautionary control rules in US fisheries management: Specification and performance. ICES J. Mar. Sci. 56, 846–852. (1999).
Google Scholar
Free, C. M. et al. Harvest control rules used in US federal fisheries management and implications for climate resilience. Fish Fish. 24, 248–262. (2022).
Google Scholar
Allen, R. L. Models for fish populations: A review. New Zeal. Oper. Res. 4, 1–20 (1975).
Google Scholar
Serpetti, N. et al. Impact of ocean warming on sustainable fisheries management informs the ecosystem approach to fisheries. Sci. Rep. 7, 13438. (2017).
Google Scholar
Subbey, S., Devine, J. A., Schaarschmidt, U. & Nash, R. D. M. Modelling and forecasting stock-recruitment: Current and future perspectives. ICES J. Mar. Sci. 71, 2307–2322. (2014).
Google Scholar
Schenk, H., Zimmermann, F. & Quaas, M. The economics of reversing fisheries-induced evolution. Nat. Sustain. 6, 706–711. (2023).
Google Scholar
Huang, B. et al. Extended reconstructed sea surface temperature, Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons. J. Clim. 30, 8179–8205. (2017).
Google Scholar
Peck, M. A. et al. Climate Change and European Fisheries and Aquaculture CERES Project Synthesis Report 110 (Universität Hamburg, 2020). https://doi.org/10.25592/uhhfdm.804.
Google Scholar
Maraun, D. Bias correcting climate change simulations—a critical review. Curr. Clim. Change Rep. 2, 211–220. (2016).
Google Scholar
BLE. Monatsbericht 2020. Bericht über die Fischerei und die Marktsituation für Fischereierzeugnisse in der Bundesrepublik Deutschland. 49. (German federal office for agriculture and food [BLE], 2020)
Ricker, W. E. Stock and recruitment. J. Fish. Res. Board Can. 11, 559–623. (1954).
Google Scholar
Beverton, R. J. H. & Holt, S. J. On the Dynamics of Exploited Fish Populations (Chapman & Hall, 1957).
Ricker, W. E. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board Can. (1975).
Google Scholar
Hilborn, R. & Walters, C. J. Quantitative Fisheries Stock Assessment. Choice, Dynamics and Uncertainty 570 (Chapman and Hall, 1992). https://doi.org/10.1007/978-1-4615-3598-0.
Google Scholar
Patterson, K. et al. Estimating uncertainty in fish stock assessment and forecasting. Fish Fish. 2, 125–157. (2001).
Google Scholar
ICES. Cod (27.47d20) Benchmark workshop on North sea stocks (WKNSEA). ICES Scientific Reports 3(25), 5–46. (2021).
Google Scholar
van Vuuren, D. P. et al. The representative concentration pathways: An overview. Clim. Change 109, 5–31. (2011).
Google Scholar
Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756. (2010).
Google Scholar
ICES. ICES Advice basis in report of the ICES advisory committee, 2019, ICES Advice 2019, Introduction_to_advice_2019. 17. (ICES, 2019); https://doi.org/10.17895/ices.advice.5757
ICES. ICES fisheries reference points for category 1 and 2 stocks; Technical Guidelines in Report of the ICES Advisory Committee, 2021. ICES Advice 2021, Section 16.4.3.1. 19 (ICES, 2021); https://doi.org/10.17895/ices.advice.7891.
Mace, P. M. A new role for MSY in single-species and ecosystem approaches to fisheries stock assessment and management. Fish Fish. 2, 2–32. (2001).
Google Scholar
Silvar-Viladomiu, P. et al. Moving reference point goalposts and implications for fisheries sustainability. Fish Fish. 22, 1345–1358. (2021).
Google Scholar
ICES. ICES Guidelines for Benchmarks. Version 1. ICES Guidelines and Policies—Advice Technical Guidelines. 26 https://doi.org/10.17895/ices.pub.22316743
Travers-Trolet, M., Bourdaud, P., Genu, M., Velez, L. & Vermard, Y. The risky decrease of fishing reference points under climate change. Front. Mar. Sci. 7, 568232. (2020).
Google Scholar
Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 1189–1232. (2001).
Google Scholar
van Rossum, G. Python Tutorial Technical Report CS R9526 71 (Centrum voor Wiskunde en Informatica (CWI), 1995).
Kwakkel, J. H. The exploratory modeling workbench: An open source toolkit for exploratory modeling, scenario discovery, and (multi-objective) robust decision making. Environ. Model. Softw. 96, 239–250. (2017).
Google Scholar
Pedregosa, F. et al. Scikit learn: Machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Google Scholar
R Core Team R: an environment for statistical computing. R Foundation for Statistical Computing, Vienna. URL (2020) Last access on 15th June, 2023
Wickham, H. ggplot2: Elegant graphics for data analysis 213 (Springer, 2016).
Google Scholar
Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9, 90–95. (2007).
Google Scholar
Wiedenmann, J. & Jensen, O. P. Uncertainty in stock assessment estimates for New England groundfish and its impact on achieving target harvest rates. Can. J. Fish. Aquat. Sci. 75, 342–356. (2017).
Google Scholar
Hilborn, R., Hively, D. J., Jensen, O. P. & Branch, T. A. The dynamics of fish populations at low abundance and prospects for rebuilding and recovery. ICES J. Mar. Sci. 71, 2141–2151. (2014).
Google Scholar
Rowe, S., Hutchings, J. A., Bekkevold, D. & Rakitin, A. Depensation, probability of fertilization, and the mating system of Atlantic cod (Gadus morhua L.). ICES J. Mar. Sci. 61, 1144–1150. (2004).
Google Scholar
Keith, D. M. & Hutchings, J. A. Population dynamics of marine fishes at low abundance. Can. J. Fish. Aquat. Sci. 69, 1150–1163. (2012).
Google Scholar
Kuparinen, A., Keith, D. M. & Hutchings, J. A. Allee effects and the uncertainty of population recovery. Conserv. Biol. 28, 790–798. (2014).
Google Scholar
Neuenhoff, R. D. et al. Continued decline of a collapsed population of Atlantic cod (Gadus morhua) due to predation-driven Allee effects. Can. J. Fish. Aquat. Sci. 76, 168–184. (2018).
Google Scholar
Winter, A.-M., Richter, A. & Eikeset, A. M. Implications of Allee effects for fisheries management in a changing climate: Evidence from Atlantic cod. Ecol. Appl. 30, e01994. (2019).
Google Scholar
Britten, G. L., Dowd, M., Kanary, L. & Worm, B. Extended fisheries recovery timelines in a changing environment. Nat. Commun. 8, 15325. (2017).
Google Scholar
Gaines, S. D. et al. Improved fisheries management could offset many negative effects of climate change. Sci. Adv. 4, eaao1378 (2018).
Google Scholar
Möllmann, C. et al. Tipping point realized in cod fishery. Sci. Rep. 11, 14259. (2021).
Google Scholar
Brander, K. M. Global fish production and climate change. PNAS 104, 19709–19714. (2007).
Google Scholar
Miller, K. et al. Climate change, uncertainty, and resilient fisheries: Institutional responses through integrative science. Progr. Oceanogr. 87, 338–346. (2010).
Google Scholar
Punt, A. E. et al. Fisheries management under climate and environmental uncertainty: control rules and performance simulation. ICES J. Mar. Sci. 71, 2208–2220. (2014).
Google Scholar
Holsman, K. K. et al. Ecosystem-based fisheries management forestalls climate-driven collapse. Nat. Commun. 11, 4579. (2019).
Google Scholar
Szuwalski, C. S. et al. Unintended consequences of climate-adaptive fisheries management targets. Fish Fish. 24, 439–453. (2023).
Google Scholar
Britten, G. L., Dowd, M. & Worm, B. Changing recruitment capacity in global fish stocks. PNAS 113, 134–139. (2015).
Google Scholar
O’Brien, C. M., Fox, C. J., Planque, B. & Casey, J. Climate variability and North Sea cod. Nature 404, 142. (2000).
Google Scholar
Beaugrand, G., Brander, K. M., Lindley, J. A., Souissi, S. & Reid, P. C. Plankton effect on cod recruitment in the North Sea. Nature 426, 661–664. (2003).
Google Scholar
Olsen, E. M. et al. Spawning stock and recruitment in North Sea cod shaped by food and climate. Proc. R. Soc. B 278, 504–510. (2011).
Google Scholar
Pilling, G. M., Millner, R. S., Easey, M. W., Maxwell, D. L. & Tidd, A. N. Phenology and North Sea cod Gadus morhua L.: has climate change affected otolith annulus formation and growth?. J. Fish Biol. 70, 584–599. (2007).
Google Scholar
Engelhard, G. H., Righton, D. A. & Pinnegar, J. K. Climate change and fishing: a century of shifting distribution in North Sea cod. Glob. Change Biol. 20, 2473–2484. (2013).
Google Scholar
Myers, R. A. When do environment-recruitment correlations work?. Rev. Fish. Biol. Fish. 8, 285–305. (1998).
Google Scholar
European Union Regulation (EU) No 1380/2013 of the European Parliament and of the Council of 11 December 2013 on the common fisheries policy, amending council regulations (EC) No 1954/2003 and (EC) No 1224/2009 and repealing Council Regulations (EC) No 2371/2002 and (EC) No 639/2004 and Council Decision 2004/585/EC. OJEU, L 354, 22–61 (2013)
ICES. General context of ICES advice. ICES Advice: Recurrent Advice. Report. (2012).
Google Scholar
Kritzer, J. P., Costello, C., Mangin, T. & Smith, S. L. Responsive harvest control rules provide inherent resilience to adverse effects of climate change and scientific uncertainty. ICES J. Mar. Sci. 76, 1424–1435. (2019).
Google Scholar
Mildenberger, T. K. et al. Implementing the precautionary approach into fisheries management: Biomass reference points and uncertainty buffers. Fish Fish 23, 73–92. (2021).
Google Scholar
Zhang, F., Regular, P. M., Wheeland, L., Rideout, R. M. & Mogan, J. M. Accounting for non-stationary stock–recruitment relationships in the development of MSY-based reference points. ICES J. Mar. Sci. 78, 2233–2243. (2021).
Google Scholar
Hamon, K., Ulrich, C. and Kell, L. T. (2007) Evaluation of management strategies for the mixed North sea roundfish fisheries with the FLR framework. MODSIM07—Land, Water and environmental management: Integrated systems for sustainability, in. Proceedings Modelling and Simulation Society of Australia and New Zealand, 2813–2819.
Romagnoni, G. et al. Influence of larval transport and temperature on recruitment dynamics of North sea cod (Gadus morhua) across spatial scales of observation. Fish. Oceanogr. 29, 324–339. (2020).
Google Scholar
ICES. Benchmark workshop on Northern Shelf cod stocks (WKBCOD). ICES Sci. Rep. 5(37), 425. (2023).
Google Scholar
ICES. Cod (Gadus morhua) in Subarea 4, divisions 6.a and 7.d, and Subdivision 20 (North Sea, West of Scotland, eastern English Channel and Skagerrak). Report of the ICES Advisory Committee, 2023. ICES Advice (2023), cod.27.46a7d20; https://doi.org/10.17895/ices.advice.21840765
Reubens, J. T., Degraer, S. & Vincx, M. The ecology of benthopelagic fishes at offshore wind farms: A synthesis of 4 years of research. Hydrobiologia 727, 121–136. (2014).
Google Scholar
Gimpel, A. et al. Ecological effects of offshore wind farms on Atlantic cod (Gadus morhua) in the southern North Sea. Sci. Total Environ. 878, 162902. (2023).
Google Scholar
Jacobsen, N. S., Marshall, K. N., Berger, A. M., Grandin, C. & Taylor, I. G. Climate-mediated stock redistribution causes increased risk and challenges for fisheries management. ICES J. Mar. Sci. 79, 1120–1132. (2022).
Google Scholar
Craig, J. K. & Link, J. S. It is past time to use ecosystem models tactically to support ecosystem-based fisheries management: Case studies using Ecopath with Ecosim in an operational management context. Fish Fish 24, 381–406. (2023).
Google Scholar
link