September 15, 2024

Corporate Nex Hub

Bringing business progress

Robust fisheries management strategies under deep uncertainty

13 min read
Robust fisheries management strategies under deep uncertainty
  • Lotze, et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. PNAS 116, 12907–12912. (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tittensor, D. P. et al. Next-generation ensemble projections reveal higher climate risks for marine ecosystems. Nat. Clim. Change 11, 973–981. (2021).

    Article 
    ADS 

    Google Scholar 

  • Haltuch, M. A. et al. Unraveling the recruitment problem: A review of environmentally-informed forecasting and management strategy evaluation. Fish. Res. 217, 198–216. (2019).

    Article 

    Google Scholar 

  • Hill, S. L. et al. Model uncertainty in the ecosystem approach to fisheries. Fish Fish. 8, 315–336. (2007).

    Article 

    Google Scholar 

  • Payne, M. R. et al. Uncertainties in projecting climate-change impacts in marine ecosystems. ICES J. Mar. Sci. 73, 1272–1282. (2016).

    Article 

    Google Scholar 

  • Szuwalski, C. S. & Hollowed, A. B. Climate change and non-stationary population processes in fisheries management. ICES J. Mar. Sci. 73, 1297–1305. (2016).

    Article 

    Google Scholar 

  • Pineda, J., Reyns, N. B. & Starczak, V. R. Complexity and simplification in understanding recruitment in benthic populations. Popul. Ecol. 51, 17–32. (2009).

    Article 

    Google Scholar 

  • Collie, J. S., Bell, R. J., Collie, S. B. & Minto, C. Harvest strategies for climate-resilient fisheries. ICES J. Mar. Sci. 8, 2774–2783. (2021).

    Article 

    Google Scholar 

  • Houde, E. D. Fish early life dynamics and recruitment variability. Am. Fish. Soc. Symp. 2, 17–29 (1987).

    ADS 

    Google Scholar 

  • Lomartire, S., Marques, J. C. & Gonçalves, A. M. M. The key role of zooplankton in ecosystem services: A perspective of interaction between zooplankton and fish recruitment. Ecol. Indic. 129, 107867. (2021).

    Article 

    Google Scholar 

  • Nilssen, E. M., Pedersen, T., Hopkins, C. C. E., Thyholt, K. & Pope, J. G. Recruitment variability and growth of Northeast arctic cod: Influence of physical environment, demography and predator-prey energetics. ICES Mar. Sci. Symp. 198, 449–470 (1994).

    Google Scholar 

  • Macura, B. et al. Impact of structural habitat modifications in coastal temperate systems on fish recruitment: A systematic review. Environ. Evid. 8, 14. (2019).

    Article 

    Google Scholar 

  • Tiedemann, M., Slotte, A., Nash, R. D. M., Stenevik, E. K. & Kjesbu, O. S. Drift Indices confirm that rapid larval displacement is essential for recruitment success in high-latitude oceans. Front. Mar. Sci. 8, 679900. (2021).

    Article 

    Google Scholar 

  • Myers, R. A. & Barrowman, N. J. Is fish recruitment related to spawner abundance?. Fish. Bull. 94, 707–724 (1996).

    Google Scholar 

  • Szuwalski, C. S. et al. Global forage fish recruitment dynamics: A comparison of methods, time-variation, and reverse causality. Fish. Res. 214, 56–64. (2019).

    Article 

    Google Scholar 

  • Basson, M. The importance of environmental factors in the design of management procedures. ICES J. Mar. Sci. 56, 933–942. (1999).

    Article 

    Google Scholar 

  • Walker, W. E., Lempert, R. J. & Kwakkel, J. H. Deep Uncertainty. In Encyclopedia of Operations Research and Management Science (eds Gass, S. I. & Fu, M. C.) 395–402 (Springer US, 2013). https://doi.org/10.1007/978-1-4419-1153-7_1140.

    Chapter 

    Google Scholar 

  • Courtney, H. 20/20 Foresight: Crafting Strategy in an Uncertain World 209 (Harvard Business School Press, 2001).

    Google Scholar 

  • Walker, W. E. et al. Defining uncertainty: A conceptual basis for uncertainty management in model-based decision support. Integr. Ass. 4, 5–7. (2003).

    Article 

    Google Scholar 

  • Marchau, V. A. W. J., Walker, W. E., Bloemen, P. J. T. M. & Popper, S. W. Introduction. In Decision Making under Deep Uncertainty: From Theory to Practice (eds Marchau, V. A. W. J. et al.) 1–20 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-030-05252-2_1.

    Chapter 

    Google Scholar 

  • Bloemen, P. J. T. M., Hammer, F., van der Vlist, M. J., Grinwis, P. & van Alphen, J. DMDU into Practice: Adaptive Delta Management in the Netherlands. In Decision Making under Deep Uncertainty: From Theory to Practice (eds Marchau, V. A. W. J. et al.) 321–351 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-030-05252-2_14.

    Chapter 

    Google Scholar 

  • Vaghefi, S. A., Muccione, V., van Ginkel, K. C. H. & Haasnoot, M. Using decision making under deep uncertainty (DMDU) approaches to support climate change adaptation of Swiss Ski resorts. Environ. Sci. Policy 126, 65–78. (2021).

    Article 

    Google Scholar 

  • Punt, A. E., Butterworth, D. S., de Moor, C. L., de Oliveira, J. A. A. & Haddon, M. Management strategy evaluation: Best practices. Fish Fish. 17, 303–334. (2016).

    Article 

    Google Scholar 

  • Blamey, L. K. et al. Redesigning harvest strategies for sustainable fishery management in the face of extreme environmental variability. Conserv. Biol. 36, 13864. (2021).

    Article 

    Google Scholar 

  • Lempert, R. J. Robust Decision Making (RDM). In Decision Making under Deep Uncertainty: From Theory to Practice (eds Marchau, V. A. W. J. et al.) 23–51 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-030-05252-2_2.

    Chapter 

    Google Scholar 

  • Rochet, M.-J. & Rice, J. C. Simulation-based management strategy evaluation: Ignorance disguised as mathematics?. ICES J. Mar. Sci. 66, 754–762. (2009).

    Article 

    Google Scholar 

  • Lempert, R. J., Nakicenovic, N., Sarewitz, D. & Schlesinger, M. Characterizing climate-change uncertainties for decision-makers. An editorial essay. Clim. Change 65, 1–9. (2004).

    Article 

    Google Scholar 

  • Howell, D., Filin, A. A., Bogstad, B. & Stiansen, J. E. Unquantifiable uncertainty in projecting stock response to climate change: Example from North East Arctic cod. Mar. Biol. Res. 9, 920–931. (2013).

    Article 

    Google Scholar 

  • Schindler, D. E. & Hilborn, R. Prediction, precaution, and policy under global change. Science 347, 953–954. (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lempert, R., Popper, S. & Bankes, S. Shaping the Next One Hundred Years: New Methods for Quantitative, Long-Term Policy Analysis (RAND Corporation, 2003). https://doi.org/10.7249/MR1626.

    Book 

    Google Scholar 

  • Lempert, R. J. et al. Making Good Decisions Without Predictions: Robust Decision Making for Planning Under Deep Uncertainty 6 (RAND Corporation, 2013). https://doi.org/10.7249/RB9701.

    Book 

    Google Scholar 

  • Walker, W. E., Rahman, S. A. & Cave, J. Adaptive policies, policy analysis, and policy-making. Eur. J. Oper. Res. 128, 282–289. (2001).

    Article 

    Google Scholar 

  • Walker, W. E., Marchau, V. A. W. J. & Kwakkel, J. H. Dynamic Adaptive Planning (DAP). In Decision Making under Deep Uncertainty: From Theory to Practice (eds Marchau, V. A. W. J. et al.) 53–69 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-030-05252-2_3.

    Chapter 

    Google Scholar 

  • Haasnoot, M., Kwakkel, J. H., Walker, W. E. & ter Maat, J. Dynamic adaptive policy pathways: A method for crafting robust decisions for a deeply uncertain world. Glob. Environ. Change 23, 485–498. (2013).

    Article 

    Google Scholar 

  • Pielke, R. A. Jr., Sarewitz, D. & Byerly, R. Jr. Decision Making and the Future of Nature: Understanding and Using Predictions. In Prediction Science, Decision Making, and the Future of Nature (eds Sarewitz, D. et al.) 361–387 (Island Press, 2000).

    Google Scholar 

  • Lempert, R. J. & Popper, S. W. High-Performance Government in an Uncertain World. In High-Performance Government: Structure, Leadership, Incentives (eds Klitgaard, R. & Light, P. C.) 113–136 (RAND Corporation, 2005).

    Google Scholar 

  • Hadjimichael, A., Reed, P. M. & Quinn, J. D. Navigating deeply uncertain tradeoffs in harvested predator-prey systems. Complexity 2020, 1–18. (2020).

    Article 

    Google Scholar 

  • Wainger, L. A. et al. (2021) Decision Making under Deep Uncertainty—What is it and how might NOAA use it? Report to the Science Advisory Board from the Ecosystem Science and Management Working Group. NOAA, Washington, D.C. 16

  • Villasante, S., Rodríguez-Gónzalez, D. & Antelo, M. On the non-compliance in the North Sea cod stock. Sustainability 5, 1974–1993. (2013).

    Article 

    Google Scholar 

  • Blanchard, J. L., Heffernan, O. A. and Fox, C. J. North Sea (ICES Divisions IVa-c and VIId). in ICES Cooperative Research Report No. 274: Spawning and life history information for North Atlantic cod stocks, (Brander, K.) 76–88 (ICES, 2005); https://doi.org/10.17895/ices.pub.5478

  • ICES. Cod (Gadus morhua) in Subarea 4, Division 7.d, and Subdivision 20 (North Sea, eastern English Channel, Skagerrak). ICES Working Group on the Assessments of Demersal Stocks in the North Sea and Skagerrak, 3 (66), 79–162; (2021).

  • Rose, G. A., Marteinsdottír, G. & Godø, O.-R. Exploitation: Cod is Fish and Fish is Cod. In Atlantic Cod: A Bio-Ecology (ed. Rose, G. A.) 287–336 (Wiley, 2019). https://doi.org/10.1002/9781119460701.ch7.

    Chapter 

    Google Scholar 

  • Hutchings, J. A. & Reynolds, J. D. Marine fish population collapses: Consequences for recovery and extinction risk. BioScience 54, 297–309. https://doi.org/10.1641/0006-3568(2004)054[0297:MFPCCF]2.0.CO;2 (2004).

    Article 

    Google Scholar 

  • Sguotti, C. et al. Catastrophic dynamics limit Atlantic cod recovery. Proc. R. Soc. B 286, 20182877. (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sguotti, C. et al. Non-linearity in stock–recruitment relationships of Atlantic cod: Insights from a multi-model approach. ICES J. Mar. Sci. 77, 1492–1502. (2020).

    Article 

    Google Scholar 

  • Blöcker, A. M. et al. Regime shift dynamics, tipping points and the success of fisheries management. Sci. Rep. 13, 289. (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Planque, B., Fox, C. J., Saunders, M. A. & Rockett, P. On the prediction of short term changes in the recruitment of North Sea cod (Gadus morhua) using statistical temperature forecasts. Sci. Mar. 67, 211–218. (2003).

    Article 

    Google Scholar 

  • Sguotti, C. et al. Stable landings mask irreversible community reorganizations in an overexploited Mediterranean ecosystem. J. Anim. Ecol. 91, 2465–2479. (2022).

    Article 
    PubMed 

    Google Scholar 

  • Sguotti, C., Färber, L. & Romagnoni, G. Regime Shifts in Coastal Marine Ecosystems: Theory, Methods and Management Perspectives. In Reference Module in Earth Systems and Environmental Sciences (ed. Sguotti, C.) (Elsevier BV, 2022). https://doi.org/10.1016/B978-0-323-90798-9.00004-4.

    Chapter 

    Google Scholar 

  • NRC Informing Decisions in a Changing Climate. 200. (The National Academy Press, 2009) https://doi.org/10.17226/12626.

  • Walters, C. J. & Martell, S. J. D. Fisheries Ecology and Management 448 (Princeton University Press, 2005).

    Book 

    Google Scholar 

  • Deroba, J. J. & Bence, J. R. A review of harvest policies: Understanding relative performance of control rules. Fish. Res. 94, 210–223. (2008).

    Article 

    Google Scholar 

  • Restrepo, V. R. & Powers, J. E. Precautionary control rules in US fisheries management: Specification and performance. ICES J. Mar. Sci. 56, 846–852. (1999).

    Article 

    Google Scholar 

  • Free, C. M. et al. Harvest control rules used in US federal fisheries management and implications for climate resilience. Fish Fish. 24, 248–262. (2022).

    Article 

    Google Scholar 

  • Allen, R. L. Models for fish populations: A review. New Zeal. Oper. Res. 4, 1–20 (1975).

    MathSciNet 

    Google Scholar 

  • Serpetti, N. et al. Impact of ocean warming on sustainable fisheries management informs the ecosystem approach to fisheries. Sci. Rep. 7, 13438. (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Subbey, S., Devine, J. A., Schaarschmidt, U. & Nash, R. D. M. Modelling and forecasting stock-recruitment: Current and future perspectives. ICES J. Mar. Sci. 71, 2307–2322. (2014).

    Article 

    Google Scholar 

  • Schenk, H., Zimmermann, F. & Quaas, M. The economics of reversing fisheries-induced evolution. Nat. Sustain. 6, 706–711. (2023).

    Article 

    Google Scholar 

  • Huang, B. et al. Extended reconstructed sea surface temperature, Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons. J. Clim. 30, 8179–8205. (2017).

    Article 
    ADS 

    Google Scholar 

  • Peck, M. A. et al. Climate Change and European Fisheries and Aquaculture CERES Project Synthesis Report 110 (Universität Hamburg, 2020). https://doi.org/10.25592/uhhfdm.804.

    Book 

    Google Scholar 

  • Maraun, D. Bias correcting climate change simulations—a critical review. Curr. Clim. Change Rep. 2, 211–220. (2016).

    Article 

    Google Scholar 

  • BLE. Monatsbericht 2020. Bericht über die Fischerei und die Marktsituation für Fischereierzeugnisse in der Bundesrepublik Deutschland. 49. (German federal office for agriculture and food [BLE], 2020)

  • Ricker, W. E. Stock and recruitment. J. Fish. Res. Board Can. 11, 559–623. (1954).

    Article 

    Google Scholar 

  • Beverton, R. J. H. & Holt, S. J. On the Dynamics of Exploited Fish Populations (Chapman & Hall, 1957).

    Google Scholar 

  • Ricker, W. E. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board Can. (1975).

    Article 

    Google Scholar 

  • Hilborn, R. & Walters, C. J. Quantitative Fisheries Stock Assessment. Choice, Dynamics and Uncertainty 570 (Chapman and Hall, 1992). https://doi.org/10.1007/978-1-4615-3598-0.

    Book 

    Google Scholar 

  • Patterson, K. et al. Estimating uncertainty in fish stock assessment and forecasting. Fish Fish. 2, 125–157. (2001).

    Article 

    Google Scholar 

  • ICES. Cod (27.47d20) Benchmark workshop on North sea stocks (WKNSEA). ICES Scientific Reports 3(25), 5–46. (2021).

    Article 

    Google Scholar 

  • van Vuuren, D. P. et al. The representative concentration pathways: An overview. Clim. Change 109, 5–31. (2011).

    Article 
    ADS 

    Google Scholar 

  • Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756. (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • ICES. ICES Advice basis in report of the ICES advisory committee, 2019, ICES Advice 2019, Introduction_to_advice_2019. 17. (ICES, 2019); https://doi.org/10.17895/ices.advice.5757

  • ICES. ICES fisheries reference points for category 1 and 2 stocks; Technical Guidelines in Report of the ICES Advisory Committee, 2021. ICES Advice 2021, Section 16.4.3.1. 19 (ICES, 2021); https://doi.org/10.17895/ices.advice.7891.

  • Mace, P. M. A new role for MSY in single-species and ecosystem approaches to fisheries stock assessment and management. Fish Fish. 2, 2–32. (2001).

    Article 

    Google Scholar 

  • Silvar-Viladomiu, P. et al. Moving reference point goalposts and implications for fisheries sustainability. Fish Fish. 22, 1345–1358. (2021).

    Article 

    Google Scholar 

  • ICES. ICES Guidelines for Benchmarks. Version 1. ICES Guidelines and Policies—Advice Technical Guidelines. 26 https://doi.org/10.17895/ices.pub.22316743

  • Travers-Trolet, M., Bourdaud, P., Genu, M., Velez, L. & Vermard, Y. The risky decrease of fishing reference points under climate change. Front. Mar. Sci. 7, 568232. (2020).

    Article 

    Google Scholar 

  • Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 1189–1232. (2001).

    Article 
    MathSciNet 

    Google Scholar 

  • van Rossum, G. Python Tutorial Technical Report CS R9526 71 (Centrum voor Wiskunde en Informatica (CWI), 1995).

    Google Scholar 

  • Kwakkel, J. H. The exploratory modeling workbench: An open source toolkit for exploratory modeling, scenario discovery, and (multi-objective) robust decision making. Environ. Model. Softw. 96, 239–250. (2017).

    Article 

    Google Scholar 

  • Pedregosa, F. et al. Scikit learn: Machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet 

    Google Scholar 

  • R Core Team R: an environment for statistical computing. R Foundation for Statistical Computing, Vienna. URL (2020) Last access on 15th June, 2023

  • Wickham, H. ggplot2: Elegant graphics for data analysis 213 (Springer, 2016).

    Book 

    Google Scholar 

  • Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9, 90–95. (2007).

    Article 

    Google Scholar 

  • Wiedenmann, J. & Jensen, O. P. Uncertainty in stock assessment estimates for New England groundfish and its impact on achieving target harvest rates. Can. J. Fish. Aquat. Sci. 75, 342–356. (2017).

    Article 

    Google Scholar 

  • Hilborn, R., Hively, D. J., Jensen, O. P. & Branch, T. A. The dynamics of fish populations at low abundance and prospects for rebuilding and recovery. ICES J. Mar. Sci. 71, 2141–2151. (2014).

    Article 

    Google Scholar 

  • Rowe, S., Hutchings, J. A., Bekkevold, D. & Rakitin, A. Depensation, probability of fertilization, and the mating system of Atlantic cod (Gadus morhua L.). ICES J. Mar. Sci. 61, 1144–1150. (2004).

    Article 

    Google Scholar 

  • Keith, D. M. & Hutchings, J. A. Population dynamics of marine fishes at low abundance. Can. J. Fish. Aquat. Sci. 69, 1150–1163. (2012).

    Article 

    Google Scholar 

  • Kuparinen, A., Keith, D. M. & Hutchings, J. A. Allee effects and the uncertainty of population recovery. Conserv. Biol. 28, 790–798. (2014).

    Article 
    PubMed 

    Google Scholar 

  • Neuenhoff, R. D. et al. Continued decline of a collapsed population of Atlantic cod (Gadus morhua) due to predation-driven Allee effects. Can. J. Fish. Aquat. Sci. 76, 168–184. (2018).

    Article 

    Google Scholar 

  • Winter, A.-M., Richter, A. & Eikeset, A. M. Implications of Allee effects for fisheries management in a changing climate: Evidence from Atlantic cod. Ecol. Appl. 30, e01994. (2019).

    Article 
    PubMed 

    Google Scholar 

  • Britten, G. L., Dowd, M., Kanary, L. & Worm, B. Extended fisheries recovery timelines in a changing environment. Nat. Commun. 8, 15325. (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gaines, S. D. et al. Improved fisheries management could offset many negative effects of climate change. Sci. Adv. 4, eaao1378 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Möllmann, C. et al. Tipping point realized in cod fishery. Sci. Rep. 11, 14259. (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brander, K. M. Global fish production and climate change. PNAS 104, 19709–19714. (2007).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miller, K. et al. Climate change, uncertainty, and resilient fisheries: Institutional responses through integrative science. Progr. Oceanogr. 87, 338–346. (2010).

    Article 
    ADS 

    Google Scholar 

  • Punt, A. E. et al. Fisheries management under climate and environmental uncertainty: control rules and performance simulation. ICES J. Mar. Sci. 71, 2208–2220. (2014).

    Article 

    Google Scholar 

  • Holsman, K. K. et al. Ecosystem-based fisheries management forestalls climate-driven collapse. Nat. Commun. 11, 4579. (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Szuwalski, C. S. et al. Unintended consequences of climate-adaptive fisheries management targets. Fish Fish. 24, 439–453. (2023).

    Article 

    Google Scholar 

  • Britten, G. L., Dowd, M. & Worm, B. Changing recruitment capacity in global fish stocks. PNAS 113, 134–139. (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Brien, C. M., Fox, C. J., Planque, B. & Casey, J. Climate variability and North Sea cod. Nature 404, 142. (2000).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Beaugrand, G., Brander, K. M., Lindley, J. A., Souissi, S. & Reid, P. C. Plankton effect on cod recruitment in the North Sea. Nature 426, 661–664. (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Olsen, E. M. et al. Spawning stock and recruitment in North Sea cod shaped by food and climate. Proc. R. Soc. B 278, 504–510. (2011).

    Article 
    PubMed 

    Google Scholar 

  • Pilling, G. M., Millner, R. S., Easey, M. W., Maxwell, D. L. & Tidd, A. N. Phenology and North Sea cod Gadus morhua L.: has climate change affected otolith annulus formation and growth?. J. Fish Biol. 70, 584–599. (2007).

    Article 

    Google Scholar 

  • Engelhard, G. H., Righton, D. A. & Pinnegar, J. K. Climate change and fishing: a century of shifting distribution in North Sea cod. Glob. Change Biol. 20, 2473–2484. (2013).

    Article 
    ADS 

    Google Scholar 

  • Myers, R. A. When do environment-recruitment correlations work?. Rev. Fish. Biol. Fish. 8, 285–305. (1998).

    Article 

    Google Scholar 

  • European Union Regulation (EU) No 1380/2013 of the European Parliament and of the Council of 11 December 2013 on the common fisheries policy, amending council regulations (EC) No 1954/2003 and (EC) No 1224/2009 and repealing Council Regulations (EC) No 2371/2002 and (EC) No 639/2004 and Council Decision 2004/585/EC. OJEU, L 354, 22–61 (2013)

  • ICES. General context of ICES advice. ICES Advice: Recurrent Advice. Report. (2012).

    Article 

    Google Scholar 

  • Kritzer, J. P., Costello, C., Mangin, T. & Smith, S. L. Responsive harvest control rules provide inherent resilience to adverse effects of climate change and scientific uncertainty. ICES J. Mar. Sci. 76, 1424–1435. (2019).

    Article 

    Google Scholar 

  • Mildenberger, T. K. et al. Implementing the precautionary approach into fisheries management: Biomass reference points and uncertainty buffers. Fish Fish 23, 73–92. (2021).

    Article 

    Google Scholar 

  • Zhang, F., Regular, P. M., Wheeland, L., Rideout, R. M. & Mogan, J. M. Accounting for non-stationary stock–recruitment relationships in the development of MSY-based reference points. ICES J. Mar. Sci. 78, 2233–2243. (2021).

    Article 

    Google Scholar 

  • Hamon, K., Ulrich, C. and Kell, L. T. (2007) Evaluation of management strategies for the mixed North sea roundfish fisheries with the FLR framework. MODSIM07—Land, Water and environmental management: Integrated systems for sustainability, in. Proceedings Modelling and Simulation Society of Australia and New Zealand, 2813–2819.

  • Romagnoni, G. et al. Influence of larval transport and temperature on recruitment dynamics of North sea cod (Gadus morhua) across spatial scales of observation. Fish. Oceanogr. 29, 324–339. (2020).

    Article 

    Google Scholar 

  • ICES. Benchmark workshop on Northern Shelf cod stocks (WKBCOD). ICES Sci. Rep. 5(37), 425. (2023).

    Article 

    Google Scholar 

  • ICES. Cod (Gadus morhua) in Subarea 4, divisions 6.a and 7.d, and Subdivision 20 (North Sea, West of Scotland, eastern English Channel and Skagerrak). Report of the ICES Advisory Committee, 2023. ICES Advice (2023), cod.27.46a7d20; https://doi.org/10.17895/ices.advice.21840765

  • Reubens, J. T., Degraer, S. & Vincx, M. The ecology of benthopelagic fishes at offshore wind farms: A synthesis of 4 years of research. Hydrobiologia 727, 121–136. (2014).

    Article 
    CAS 

    Google Scholar 

  • Gimpel, A. et al. Ecological effects of offshore wind farms on Atlantic cod (Gadus morhua) in the southern North Sea. Sci. Total Environ. 878, 162902. (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jacobsen, N. S., Marshall, K. N., Berger, A. M., Grandin, C. & Taylor, I. G. Climate-mediated stock redistribution causes increased risk and challenges for fisheries management. ICES J. Mar. Sci. 79, 1120–1132. (2022).

    Article 

    Google Scholar 

  • Craig, J. K. & Link, J. S. It is past time to use ecosystem models tactically to support ecosystem-based fisheries management: Case studies using Ecopath with Ecosim in an operational management context. Fish Fish 24, 381–406. (2023).

    Article 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Copyright © All rights reserved. | Newsphere by AF themes.